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The motion generated by a rising particle in a
rotating fluid – numerical solutions. Part 2.

The long container case
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Computer Science Department, Technion – Israel Institute of Technology, Haifa 32000, Israel

(Received 29 June 2000 and in revised form 10 September 2001)

Numerical finite-difference results from the full axisymmetric incompressible Navier–
Stokes equations are presented for the problem of the slow axial motion of a disk
particle in an incompressible, rotating fluid in a long cylindrical container. The
governing parameters are the Ekman number, E = ν∗/(Ω∗a∗2), Rossby number,
Ro = W ∗/(Ω∗a∗), and the dimensionless height of the container, 2H (the scaling
length is the radius of the particle, a∗; Ω∗ is the container angular velocity, W ∗ is the
particle axial velocity and ν∗ the kinematic viscosity). The study concerns the flow field
for small values of E and Ro while HE is of order unity, and hence the appearance of a
free Taylor column (slug) of fluid ‘trapped’ at the particle is expected. The numerical
results are compared with predictions of previous analytical approximate studies.
First, developed (quasi-steady-state) cases are considered. Excellent agreement with
the exact linear (Ro = 0) solution of Ungarish & Vedensky (1995) is obtained when
the computational Ro = 10−4. Next, the time-development for both an impulsive start
and a start under a constant axial force is considered. A novel unexpected behaviour
has been detected: the flow field first attains and maintains for a while the steady-state
values of the unbounded configuration, and only afterwards adjusts to the bounded
container steady state. Finally, the effects of the nonlinear momentum advection
terms are investigated. It is shown that when Ro increases then the dimensionless
drag (scaled by µ∗a∗W ∗) decreases, and the Taylor column becomes shorter, this effect
being more pronounced in the rear region (µ∗ is the dynamic viscosity). The present
results strengthen and extend the validity of the classical drag force predictions
and therefore the issue of the large discrepancy between theory and experiments
(Maxworthy 1970) concerning this force becomes more acute.

1. Introduction
We consider the slow axial motion of a symmetrical particle, whose circumscribing

cylinder is of radius a∗ in an incompressible, rotating fluid in a cylindrical container
of length 2H∗ and radius r∗max which rotates with high angular velocity Ω∗ about the
axis of symmetry, z, as sketched in figure 1. The particle axial velocity relative to
the container is denoted by w∗p and its (quasi) steady-state value W ∗ will be used as
the reference velocity. Typically, the particle considered is in the middle of the
container. We are interested in the velocity field, v∗, and drag force, D∗. We denote by
p∗, ρ∗ and ν∗ the reduced pressure, density and kinematic viscosity. Asterisks denote
dimensional variables.
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Figure 1. Sketch of the configuration. The particle is solid and torque-free (in the present inves-
tigation, a thin disk). The cylindrical coordinate system, whose origin is attached to the centre
of the particle, co-rotates with the boundaries of the container. The lateral boundary which is
at r = rmax is not shown here. a∗, W ∗ and a∗/W ∗ are the scales for length, velocity and time t.
(In addition to t, the dimensionless time T which is scaled with Ω∗−1 is also used.) The z- and
r-directions are called ‘vertical’ and ‘horizontal’, the corresponding velocity components are u and
w, and ψ = − ∫ r

0
w(r′, z)r′dr′.

This is a sequel to Minkov, Ungarish & Israeli (2000), referred to as Part 1. Here we
are concerned with a long container configuration where a free Taylor column (slug)
may develop on the moving particle, while in Part 1 we considered the opposite short
container configuration which is dominated by viscous Ekman layers and (usually
thin) Stewartson layers.

From the academic aspect, this problem deserves attention because there still are
significant gaps in knowledge and some unexplained discrepancies between theory and
experiments. Ironically, perhaps, the present still only partly solved problem was one
of the first tackled in the realm of rotating fluids at the beginning of the last century
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(by Proudman, Grace and Taylor). From the practical point of view, the results are
applicable to the study of rheology of rotating suspensions, centrifugal separation
processes (see Ungarish 1993) and the motion of cores of planets. Nevertheless,
numerical simulations of this problem are lacking.

The main dimensionless parameters of the flow field are

E =
ν∗

Ω∗a∗2
=

1

T
, Ro =

W ∗

Ω∗a∗
, H =

H∗

a∗
. (1.1)

Here E and T are the Ekman and Taylor numbers. The Rossby number, Ro, expresses
the ratio of the inertial and advective to the Coriolis accelerations in the fluid, and
provides an estimate of the relative importance of the nonlinear terms in the equations
of motion. We are interested in flows with small E (large T ) and small Ro. In this
paper we consider the case of large H so that δ = HE is of order unity. To be
more specific, the numerical results are for 0.005 6 E 6 0.01, 10−4 6 Ro 6 0.25,
0.25 6 HE 6 0.68.

The following scaling is utilized

{r∗, t∗, v∗, p∗, D∗} =

{
a∗r,

a∗

W ∗ t,W
∗v,

W ∗ν∗ρ∗

a∗
p,W ∗ν∗ρ∗a∗D

}
. (1.2)

An additional scaling for the time, T = Ω∗t∗, is also used. The dimensionless
governing equations, expressed in the system of figure 1, are

∇ · v = 0, (1.3)

Ro
∂v

∂t
+ Rov · ∇v + 2ẑ × v = −E∇p− E∇× ∇× v. (1.4)

We assume axial symmetry. The boundary conditions are no-slip and no-penetration
on the particle, whose geometry is specified, and on the container boundaries (which,
in some analytical investigations, are ‘at infinity’). The angular motion of the particle
is defined by the torque-free condition. The vertical motion is usually assumed to be
attained impulsively, but we also calculated the accelerated motion of the particle
from rest under the action of a constant axial driving force, which simulates the
behaviour of a buoyant particle in a gravity field parallel to the axis of rotation.

1.1. Previous investigations

Here we present a brief summary of previous studies on the long container configur-
ation for the E � 1 case; the opposite, viscous flow configurations with larger values
of E have been more satisfactorily covered by the existing theory and experiments
(see Dennis, Ingham & Singh 1982 and the references cited therein).

The relevant analytical results are all based on the linear theory, i.e. the approxi-
mation obtained when Ro = 0 multiplies the advection term in (1.4). Formally, this
approximation is regarded as the leading term in the expansion of the flow-field
variables in powers of Ro in the asymptotic limit Ro→ 0 and is expected to provide
good approximations to the exact solution when Ro� 1, i.e. very slow axial motion
compared with Ω∗a∗. We note, however, that from the physical point of view Ro = 0
means ‘no motion’ and hence the mathematical solution for this particular value of
the parameter Ro cannot be realized in a laboratory experiment or in a ‘numerical
experiment’ (like the present one) which simulates real motion. The linear theory
formulation still leaves a formidable system and additional simplifications are nec-
essary for analytical progress, such as the unbounded domain assumption. However,
the time-independent, inviscid (E = 0) and unbounded case, considered in the second
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decade of the last century by Grace, Proudman and Taylor, turned out to be an
oversimplification whose solution is not unique.

Stewartson (1952) considered the inviscid, unbounded but time-dependent problem.
This solution shows that the flow field reaches a steady state, where the drag force
on a circular particle such as a sphere or a disk is

D∗0 = 16
3
a∗3Ω∗W ∗ρ∗, (1.5)

and in dimensionless form,

D0 = 16
3
E−1. (1.6)

Here the subscript 0 in the drag force denotes the inviscid unbounded container limit
(unlike the short container case). (The presence of E−1 in (1.6) is due to the accepted
scaling (1.2); the result is used here for comparisons at finite values of E only.) The
corresponding flow field displays a cylinder of radius 1 of swirling fluid moving with
the particle. This domain can be identified as the Taylor column, but the infinite
length, and the fact that the swirl velocity is infinite and discontinuous on the vertical
boundary, render this description unrealistic.

Morrison & Morgan (1956) and Moore & Saffman (1969, § 8), considered the
steady-state slightly viscous (E → 0) flow field for a disk. Only radial shear terms are
kept in this approximation, i.e. the ‘horizontal’ Ekman layers are not incorporated
and the no-slip conditions on the particle are not satisfied. The drag force calculated
with this model turns out to be the same as predicted by the inviscid analysis, (1.6),
but the discontinuities of the inviscid flow-field result are smoothed out by the small
viscous terms. Moreover, as pointed out by Barnard & Pritchard (1975), the flow
field of the Moore & Saffman approximation has a stagnation point on the axis at
the distance 0.053/E from the particle; this was identified as the tip (and hence the
length) of the Taylor column slug of fluid trapped by the particle. The shape of this
column, the flow inside it and the interaction between it and the Ekman layers on
the particle remained unsolved.

Experiments, notably by Taylor (1922, 1923), have demonstrated the appearance
of a long column of fluid which moves with the particle, and further quantitative
experimental results were given by Maxworthy (1970). The latter experiments were
performed in a cylinder of about 150 cm long and 30 cm diameter with spherical
particles of about 1 cm radius, and covered quite a wide range of Ro (but larger than
0.02) and E (but larger than 2× 10−3). The measured drag force for small values of
Ro was about 50% larger than the prediction (1.6). On the other hand, the length of
the Taylor column (slug), 0.058/E, turned out to be in fair agreement with Moore
& Saffman’s results. This perplexing drag discrepancy and the lack of theoretical
knowledge for the interpretation of the observed flow in the Taylor column (including
its shape and the interaction with the Ekman layers on the particle) motivated much
of the following research on this problem.

Hocking, Moore & Walton (1979) extended the Moore & Saffman model to a
domain bounded axially by solid walls at z = −Hl,Hu (again, the Ekman layers and
the no-slip conditions were not included). The results indicate that the drag force
in a bounded domain is larger than predicted by (1.6). However, the discrepancy is
only about 9% when Hu = Hl = E−1, and increases when the domain shrinks and
when the asymmetry increases. No results for the flow field and Taylor column were
presented.

Weisenborn (1985) used the special method of induced forces to calculate the
drag on a sphere in an unbounded domain for arbitrary values of E. The viscous
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contribution increases the drag but for E → 0 the inviscid result (1.6) is recovered
(the discrepancy is less than 9% for E = 10−3). No information about the flow field
and Taylor column was obtained.

An exact solution of the linear problem for a disk particle in an unbounded domain,
for arbitrary values of E, was presented by Vedensky & Ungarish (1994, referred to
herein as VU). The Ekman layer influence is implicitly incorporated in these flow field
and drag force results. It turns out the Taylor column slug (both at the front and rear
of the particle) is actually a closed domain of recirculation (bounded by the interfaces
ψ(r, z) = 0 ) which is clearly detached from the particle and does not exchange fluid
with the Ekman layers, see figure 1. The critical value of E below which such a Taylor
column structure appears is 1/37 (approximately), and for small E the length of the
column is 0.051/E. At a fixed finite E the drag force of a disk is, as expected, smaller
than that of a sphere, but still larger than the inviscid result (1.6); again, the latter
is recovered for very small values of E. Tanzosh & Stone (1994) presented a similar
exact solution for spherical and prolate-ellipsoidal particles. For a sphere the drag
force is in perfect agreement with the results of Weisenborn (1985), and the flow field
is like that of the disk, but the critical E is about 1/50. We infer that the critical E
decreases with L = (axial length)/radius of the particle. Conversely, we speculate that
for a given E and a streamlined particle of sufficiently large L the slug-like Taylor
column of trapped recirculating fluid does not appear, but such configurations are
outside the scope of our investigation.

An exact solution of the linear time-independent equations of motion in the axially
bounded domain for a disk particle in a symmetric position (Hl = Hu = H) was
obtained by Ungarish & Vedensky (1995, referred to herein as UV), and shows the
influence of H on the shape of the Taylor column and on the drag force for small
but finite values of E. The results indicate that the Taylor column slug appears when
the parameter δ = EH > 0.08 and that for δ > 0.25 the flow-field features in this
domain are very close to those in the unbounded case.

The time-dependent behaviour of the flow field and the drag force in the unbounded
inviscid case for impulsive start of a disk particle were investigated by Greenspan
(1968) and Smith (1987). The former study indicates that the velocity of propagation
of the tip of the Taylor column is 0.675a∗Ω∗, and the latter shows that the drag force
develops in less than one revolution of the system. There is no confirmation of these
results.

No numerical results for the problem under investigation have been presented, to
our knowledge. A closely related study, Dennis et al. (1982), concerned a spherical
particle in an unbounded domain. The steady-state axisymmetric Navier–Stokes
equations in the stream-function–vorticity formulation in spherical coordinates were
solved, with the far-field boundary condition applied at some finite radius. However,
due to convergence difficulties, reliable results were obtained only for E > 2. We are
interested in the opposite range, E � 1.

1.2. Objectives

The above-mentioned analytical and experimental studies have obvious limitations
and leave open important questions, in particular concerning the time-dependent
motion and the effect of the nonlinear terms on the drag and Taylor column behaviour.
The possibility that the linear theory (Ro = 0) is a singular limit of the Navier–Stokes
solution and is therefore never compatible with experimental observations (which
are necessarily at Ro > 0) has not yet been dismissed by evidence from numerical
computations of the full Navier–Stokes equations.
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The objective of the present study is to throw light on these topics. To this end, we
attempted the numerical solutions of the full system of Navier–Stokes equations (1.3)–
(1.4), in axisymmetric form, for a disk particle in a cylindrical container, by a finite-
difference method. The advantage over previous investigations is the incorporation
of more relevant physical effects in the analysis, which enable us to gain wider, more
reliable and more accurate results and insights.

The numerical finite-difference solver is described in Part 1. Briefly, the spatial
discretization grid is non-uniform, for improving the resolution around r = 1 and
in the Ekman layers. The horizontal grid lines are adjusted (moved) repeatedly with
time to fit the relative motion of the disk with respect to the walls. The results
are obtained by time marching from an initial state of solid-body rotation. The
typical grid has about 150 radial and 100–400 axial intervals. Unless stated otherwise,
the computations are for rmax = 5 (we found that larger values of this parameter
have insignificant influence on the (quasi) steady-state features, and the influence on
the transient flow will be mentioned). We noticed that the required computational
resources increase drastically when EH is of the order of unity and E decreases, and
therefore we had to restrict the computations to E > 1/200 and H 6 80.

The paper is organized as follows. The numerical results for almost linear flows are
presented and discussed in § 2 for both the steady-state and the time-dependent stage.
Then, the influence of the nonlinear advection terms is considered in § 3. We present
some concluding remarks in § 4.

2. Almost linear flow: numerical results with Ro = 10−4

2.1. The steady state

2.1.1. The symmetric configuration

The first task is to perform critical comparisons of the numerical results with
previous solutions obtained by different methods. The most relevant analytical results
for comparisons are provided by the exact linear solution of UV for the steady-state
flow in a symmetric configuration (i.e. the disk is midway between the upper and
lower boundaries); for the related unbounded case the results of VU can be used.

A comparison of the drag force results between the present computations and
those of UV is presented in table 1 for various values of E and H (not tabulated
in the cited paper, but computed here with the same software). The values of the
parameter δ = EH in this table are definitely in the range where ‘long’ container
features are dominant, including the presence of a well-developed Taylor column. The
present results are obtained by time marching until time fluctuations were judged as
insignificant (see § 2.1.3), while the analytical ones use Ro = 0 in the time-independent
momentum equations and apply boundary conditions at rmax = ∞. Nevertheless, the
difference between the numerical and analytical drag force results is below 1% for all
cases considered, in the range of the numerical error of the compared variables. We
therefore conclude that table 1 indicates excellent agreement between the results and
can be considered as a reliable mutual validation both of the exact linear solution
and of the present numerical solution for the long container case.

The numerically computed meridional flow fields, in terms of the stream function
ψ(r, z), are displayed in figures 2(b) and 3(b), for two cases with different H and E but
the same δ = 0.25. The presence of a trapped region of recirculating fluid (inside the
closed streamline ψ = 0), which we identify as the Taylor column slug, is evident. For
comparison, the analytical-linear streamlines for the unbounded configuration with
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E H δ = EH Da−l Dnum ∆(%) Dnum/D0 − 1

1/100 25 0.25 776 772 −0.5 0.46
50 0.50 696 693 −0.4 0.31

1/117 80 0.68 776 773 −0.4 0.24
1/200 50 0.25 1486 1475 −0.7 0.39

Table 1. The drag force results of the exact analytical-linear and present numerical computation
for various E and H; ∆ is the discrepancy between these results. The deviation of the numerical
drag result from the unbounded inviscid prediction is given in the last column.
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Figure 2. Stream function contour lines for (a) E = 1/100, H = ∞ (analytical linear) and
(b) E = 1/100, H = 25, Ro = 10−4 (numerical). The computation was performed on a 193 × 147
grid with 300 000 time steps.

the same value of E are displayed in figures 2(a) and 3(a). The qualitative features
of the numerical results are in full agreement with the prediction of the analytical-
linear solution. UV found that for small E and δ > 0.25 the flow fields in bounded
and unbounded containers are very similar. Here we observe that at δ = 0.25 some
influence from the boundaries is still present: the length of the Taylor column is
shorter than in the infinite case (3.8 instead of 4.8 for E = 1/100 and 8.1 instead of
9.8 for E = 1/200) and the recirculation is weaker. We attribute this to the fact that
E is not truly small; indeed, as E decreases, the relative discrepancy decreases.

2.1.2. The asymmetric configuration

For the configuration with the disk in a non-symmetric position, Hl 6= Hu, no
analytical linear results are available for a direct accurate comparison. The only
relevant study is that of Hocking et al. (1979) which calculated the drag force on
a disk using the linear steady-state equations from which the axial shear has been
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Figure 3. Stream function contour lines for (a) E = 1/200, H = ∞ (analytical linear) and
(b) E = 1/200, H = 50, Ro = 10−4 (numerical). The computation was performed on a 443 × 147
grid with 300 000 time steps.

discarded; it predicts that, in the limit E → 0, the ratio of the drag in the bounded
domain to the drag in the unbounded domain is a function of δu and δl only (the
subscripts t and b are used in that paper instead of the present u and l); let us denote
this function by G(δu, δl). However, some modifications are necessary to make these
results useful in realistic (finite E) circumstances, as follows.

Let D(E,Hu,Hl) and D(E,∞) be the drag force, in the asymmetric configuration
and in the unbounded domain respectively, for some value of E. Following the results
of UV for the symmetric case, for small but finite E and for δu +δl > 0.16, we suggest
the conjecture

D(E,Hu,Hl) = G(δu, δl)D(E,∞). (2.1)

The values for D(E,∞) (denoted in brief D∞) are available analytically by the method
of VU and G(δu, δl) are provided by Hocking et al. (see Appendix A).

The conjecture (2.1) is used in table 2 to estimate the analytical linear drag, which is
displayed together with the present numerical drag results for typical configurations.
As in the symmetric case, the numerical drag is slightly smaller than the analytical
prediction, by about 1%. The asymmetry with respect to the boundaries increases
the drag, but this is a small contribution compared with the drag increase produced
by the presence of the boundaries. The agreement between the predicted and the
computed results is good (also for cases not displayed here), which we consider to be
a verification both of the numerical results and of the conjecture (2.1).

2.1.3. The time-dependent development of the flow field for an impulsive start

We now analyse the transient flow field for the impulsive start of the disk from
rest (i.e. solid-body rotation of the fluid–disk–boundary system) until the attainment
of the steady-state features.
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E H δu δl D∞a−l D∞a−lG(δu, δl) Dnum ∆(%)

1/100 50 0.50 0.50 597 697 693 −0.6
0.33 0.67 597 714 707 −1.0
0.25 0.75 597 727 730 −1.6

1/117 80 0.68 0.68 690 776 773 −0.4
0.52 0.84 690 784 779 −0.6
0.41 0.96 690 799 791 −1.1

Table 2. Effect of asymmetry on drag force results, according to the analytical linear conjecture (2.1)
and present numerical computations (with Ro = 10−4). ∆ is the discrepancy, δu = EHu, δl = EHu.

Consider first the drag force behaviour. The relevant analytical study of Smith
(1987), for a disk in an unbounded domain and E = 0, yields the elegant result

D0(T)

D0(∞)
=

∫ 2T

0

J0(u) du, (2.2)

where J0 is the Bessel function of order zero, and we recall that T is the time scaled
with Ω∗−1. According to this formula, the drag increases quickly and first overshoots
its steady-state value by about 47% atT = 1.2 (about 0.2 revolutions of the system);
the convergence to the steady-state value is within (almost inertial, slowly damped)
oscillations with period of about π.

Our numerical results, figures 4 and 5, confirm that the drag grows quickly, displays
an initial overshoot at about 0.2 revolution, and then damped oscillations. However,
there are quantitative discrepancies with (2.2), being most pronounced in the amplitude
of the oscillations: the first overshoot is only about 5%. While viscous effects are
expected to reduce this amplitude overshoot, the difference is still surprisingly large.
The period of the oscillations is larger by about 30%, and this too can be attributed
to the influence of viscosity, as the damping can be seen to be faster for E = 1/100
than for E = 1/200.

After the first revolution (T = 2π) the drag force attains a quasi-constant average
value which does not depend on H . A closer examination indicates that this is the
value of the drag predicted for the infinite container by VU (597 for E = 1/100 and
1145 for E = 1/200). This quasi-constant value of the drag persists for a period of
time that depends on H: about 2.5 revolutions for H = 25 and about 5 revolutions
for H = 50. We infer that during this first stage the flow created by the disk ‘does
not know’ that the container is bounded axially.

This inference is supported by the behaviour of the Taylor column as a function
of time, which is considered next. The relevant previous investigation by Greenspan
(1968, § 4.3) considers the time-dependent inviscid (E = 0) flow field created by the
impulsively started disk in an unbounded domain. The solution points out that the
time-dependent Taylor column is a manifestation of the basic mechanism of inertial
wave propagation, with radial phase velocity and axial group velocity. In the Taylor
column formation the important part of the spectrum consists of wavelengths of
(approximately) the diameter of the disk. In particular, the position of the stagnation
point of the flow towards the disk, which can be identified as the tip of the Taylor
column, propagates with the velocity 0.675Ω∗a∗ and corresponds to a wavelength
of 2.12. This prediction that the length of the Taylor column slug is 0.675T (see
figure 4.2 in Greenspan 1968) may be expected to be relevant to practical cases of
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Figure 4. The drag force as a function of time, numerical results, for E = 1/100, H = 25 and
H = 50, Ro = 10−4. Also shown the steady-state analytical-linear results for the infinite and finite
containers. (a) A stretched portion of (b).

finite E for a short time period only, T < 0.08/E, until the final length 0.053/E is
achieved.

Comparisons with numerical results are displayed in figures 5 and 6. The initial
growth of the column is in good agreement with Greenspan’s inviscid solution.
Moreover, the column grows until the steady-state length of the unbounded container
is reached, and even slightly overshoots. Next, the length oscillates slightly, with
almost inertial frequency, around this value during several revolutions of the system.
Then the information about the finiteness of the axial domain reaches the Taylor
column and a process of adjustment to the ‘correct’ steady-state length takes place;
during this process quite large-amplitude and low-frequency oscillations appear.

Finally, we found that the time-dependent behaviour of the computed stream
functions displays a similar stepwise development, and that the asymmetry of the
geometry does not affect the main pattern of the foregoing observations (Minkov
1998).
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Figure 5. The drag force and the length of Taylor column as functions of time, numerical results,
for E = 1/200, H = 50, Ro = 10−4. Also shown, in (a), the steady-state analytical-linear drag results
for the infinite and finite containers and, in (b), the prediction of Greenspan for the growth of the
Taylor column.

The detailed description of the means by which information from the boundaries
is conveyed to the Taylor column region, and of the subsequent oscillations, requires
a special analysis which is beyond the scope of this paper. However, some standard
results of the above-mentioned inertial wave consideration (Greenspan 1968, § 4.3)
provide the following tentative interpretation. The fastest wave in our cylindrical
container is the one with the longest wavelength, 2rmax, and its group velocity in the
axial direction is 2rmax/π (scaled by Ω∗a∗). Such a wave is generated at t = 0 at
the disk level, then travels from the disk to the horizontal boundary and back (after
reflection) in the time interval ∆T = πH/rmax. Thus, for the cases with H = 25 and
50 considered in the numerical examples, the relevant time intervals are 15.7 and
31.4, respectively. Indeed, figures 4 and 5 indicate that the influence of the horizontal
boundaries is first recognized by the drag force at this time, and by the tip of the
Taylor column a little earlier. Furthermore, the time interval ∆T is in fair agreement
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Figure 6. The length of Taylor column as a function of time for E = 1/100, H = 25 and H = 50,
Ro = 10−4 and time-dependent result for the inviscid infinite configuration.

with the period of the large oscillations which accompany the approach to steady
state of the Taylor column length. The amplitude of the major oscillations is of
the order of magnitude of the difference between the ‘finite’ and ‘infinite’ container
relevant features. The process is complicated by the viscous decay, wave interactions,
and the presence of small-amplitude oscillations with the inertial period π. These
inferences are supported well by numerical simulation with various values of rmax
ranging from 3 to 8 (not displayed here).

We can now estimate the distance zp travelled by the particle from its initial release
until the ‘final’ steady state is established. We simply multiply the time of the Taylor
column formation plus adjustment to the boundary, 0.08/E + 5∆T, by the constant
particle velocity, and obtain

zp

H
= Ro

(
0.08

EH
+

5π

rmax

)
. (2.3)

In the typical cases of interest the expression that multiplies Ro is of order unity, and
hence for Ro� 1 a (quasi) steady-state is attainable.

The flow created by starting from rest under the action of a constant force displays
a similar behaviour; some details are given in Appendix B.

3. The effect of nonlinear terms
To the best of our knowledge, the effect of the nonlinear terms on the slow motion

in a long container has not been investigated theoretically and hence questions about
the range of validity of the linear theory, and about the trend of variation of the drag
force and the length of the Taylor column when Ro increases from 0 to some small
but finite value (say, 0.05), lack theoretical answers.
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Figure 7. The contour lines of the stream function for E = 1/100, H = 25 , Ro = 0.1,
(a) lower and (b) upper half of flow.

The basic investigation is concerned with the deviations from linear steady-state
flow results. Strictly speaking, for Ro > 0 the flow field under consideration in a
bounded domain has no steady state since the particle–boundary geometry changes
with time, and more significantly so when the value of Ro increases. However, we may
expect a quasi-steady state when Ro � 1, as shown in the previous section. On the
other hand, in ‘numerical experiments’ an artificial steady state, with the disk in a fixed
position, can be attained for physically unrestricted values of Ro; we think that such
virtual boundary conditions results may provide insight into the contribution of the
nonlinear terms although they lack a clear-cut physical analogue. This approach was
also dictated by a practical numerical difficulty: only computations with Ro > 0.02
show a clear pattern of dependence on the changing Ro which could be viewed as
reliable for the present analysis of the nonlinear effects.

Typical results for the lengths of the upper and lower Taylor column slugs and
drag force for various values of Ro are presented in tables 3 and 4. Qualitatively,
the results indicate that when Ro increases then: (a) the dimensionless drag force
decreases and the Taylor column slug shortens; (b) the flow field ahead of and behind
the disk becomes asymmetric, with a stronger circulation and longer Taylor column
of recirculation on the upper side than on the lower side, see figure 7 (at some larger
values of Ro the lower region of trapped recirculating fluid disappears).

Table 3 and figure 8 indicate that the decrease of the dimensionless drag force due
to the inertial terms in the long container configurations behaves like Ro2 for small
Ro (say, Ro 6 0.15). The accuracy of the coefficient c = [D − Dlin]/[DlinRo2] is low
(two digits for Ro > 0.05 and one digit otherwise) because the values of the drag
force for small Ro are close and cancellation errors appear in the numerator. This
coefficient increases when H and E decrease. However, we were unable to establish
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E H Ro lu ll 1− D/Dlin (Dlin − D)/DlinRo
2

1/100 25 0.02 3.7 3.7 0.002 4.9
0.05 3.7 3.5 0.012 5.0
0.1 3.6 3.1 0.051 4.9
0.15 3.4 0 0.11 4.8
0.2 3.2 0 0.18 4.4
0.25 3.0 0 0.24 3.8

50 0.02 4.4 4.4 0.001 3.0
0.05 4.4 4.3 0.009 3.4
0.1 4.2 4.0 0.034 3.4
0.15 3.9 3.5 0.075 3.3
0.2 3.7 0 0.13 3.2
0.25 3.3 0 0.18 2.9

1/200 50 0.02 8.1 8.1 0.004 9.4
0.05 7.9 7.8 0.024 9.5
0.1 7.4 7.0 0.091 9.1
0.15 6.8 5.8 0.17 7.6
0.2 6.2 4.6 0.23 5.7

Table 3. Lengths of upper and lower Taylor column slugs and the relative drag force reduction due
to the effect of the inertial terms in a finite long container. l = 0 means that a stagnation point and
region of recirculation did not appear.

E Ro lu ll 1− D/Dlin (Dlin − D)/DlinRo
2

1/100 0.02 4.7 4.7 0.001 2.1
0.05 4.6 4.6 0.005 2.4
0.1 4.5 4.4 0.023 2.4
0.15 4.2 4.0 0.058 2.6
0.2 3.9 3.4 0.10 2.5
0.25 3.6 0 0.15 2.4
0.33 3.2 0 0.22 2.0
0.5 2.3 0 0.28 1.1
0.66 1.6 0 0.26 0.6

1/200 0.02 9.6 9.6 0.002 5.3
0.05 9.4 9.4 0.012 4.9
0.1 8.7 8.7 0.050 5.0
0.15 8.2 7.8 0.11 4.7
0.2 7.4 6.5 0.16 4.0

Table 4. Lengths of upper and lower Taylor column slugs and the relative drag force reduction due
to the effect of the inertial terms in a virtual infinite container. l = 0 means that a stagnation point
and region of recirculation did not appear.

the asymptotical value for E → 0, H → ∞. We note in this context that the weak
dependence of the drag force on Ro is puzzling. An inspection of the numerical results
indicates that the advection terms and the resulting changes in the pressure are of the
same order of magnitude, but the net contribution to the drag (i.e. the appropriate
integral of the pressure difference between the upper and lower sides of the particle)
turns out to be nominally much smaller.

The trends of influence of the nonlinear advection terms on the results are consistent
with the measurements of Maxworthy (1970), but this conclusion is not straightfor-
ward. Figure 11 in that paper shows the length of the Taylor column slug as a
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function of the parameter 2/Ro for various values of 1/66 6 E 6 1/375. (In the orig-
inal notation the parameter N equals 2/Ro in our notation.) The impression is that
for a fixed value of E the length of the column decreases with Ro, although the rate
of change becomes less pronounced as E decreases. However, on p. 469 Maxworthy
states that the length of the column does not change with Ro (in the range 0.02–0.4)
for ‘small enough’ values of E. Our results indicate a decrease of the length with
Ro for the tested values of E = 1/100 and 1/200. Maxworthy presented the drag
results the form CD = (2/π)DE/Ro in our notation. For small E the experiment gave
CD ∼ 1/Ro1.07, i.e. D decreases as 1/Ro0.07 when Ro increases for a fixed E. A good
comparison with the numerical trend D ∼ (1− cRo2) would need accurate values of
CD×Ro which cannot be extracted from the log-log plots of CD vs. 2/Ro of the paper.

In any case, the major discrepancy between theory and these experiments concerning
the value of the drag force remains unresolved, and becomes even more puzzling in
view of the present results. The measured drag values (for a sphere) are significantly
larger than the analytical-linear (Ro = 0) predictions, which seemed to suggest that
either the analytical-linear Ro = 0 results are wrong, or the dimensionless drag
increases significantly due to the presence of advection terms in the real flows. But
our numerical results clearly refute these possibilities, by showing that the linear
results are correct (for small values of Ro) and the incorporation of the nonlinear
terms reduces the dimensionless drag.

4. Concluding remarks
We performed a numerical investigation, based on the the full axisymmetric Navier–

Stokes equations, of the flow field generated by a disk particle that moves slowly along
the axis in a long rapidly rotating cylindrical container.

We investigated both (quasi) steady state and the initial transient stage.
Comparisons of numerical solutions with Ro = 10−4 to linear (Ro = 0) quasi-
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steady analytical solutions were performed. For the symmetric geometry (particle
in the midplane) good agreement was obtained with the results of UV and VU.
This is a strong support of the view that the linear theory is a regular limit of the
Ro� 1 solution, and hence the insight provided by the linear theory into the Taylor
column slug structure and drag force behaviour have physical relevance (although
strictly speaking, Ro = 0 means no motion). For a non-symmetric configuration we
introduced and tested a simple conjecture for the analytical calculation of the drag
force by combining available linear results for simpler cases: the E → 0 case studied
by Hocking et al. (1979) and the unbounded-domain ‘exact’ results of VU. We suggest
that this conjecture can also be applied to spherical and ellipsoidal particle by using
the unbounded-domain ‘exact’ results of Tanzosh & Stone (1994). This provides an
extension of the predictive power of the linear theory: the drag for a finite (but small)
value E when the particle is in a non-symmetric position in a long container can
be accurately evaluated (although no direct analytical solution to this geometry is
available).

We investigated the time-dependent initial stage of formation of the flow field for
both an impulsive start and release from rest under the action of a constant axial
force. In both cases a novel behaviour has been detected: first the flow field attains and
maintains for a while the steady-state values of the unbounded configuration. The time
period of this first stage is ∆T ≈ πH/rmax (in the asymmetric situation, the smallest
of Hu,Hl replaces H), which, in some feasible circumstances, corresponds to several
revolutions of the system. This gives physical reality to the abstract ‘unbounded
domain’ solution. During this stage, a particle released under a constant force is
expected to overshoot the steady-state velocity. In the second stage the flow field
around the disk ‘feels’ the influence of the horizontal boundaries and readjusts, with
oscillations, to the steady state in the bounded configuration (i.e. a shorter Taylor
column slug and a larger drag force). These stages are consistent with the axial
propagation of perturbations by inertial waves of two typical lengths: of the disk
diameter, to form the Taylor column, and of the container diameter, to adjust to
the presence of the horizontal walls; although the latter waves travel faster, their
influence is delayed when the container is much longer than the Taylor column.

The effect of the nonlinear advection terms in a long container configuration
was an open question, to which our computations, for small but finite value of
Ro, provide the following answers. When Ro increases from ‘zero’ to larger values,
the dimensionless drag force decreases (some care is needed in the interpretation
because the drag is scaled with ρ∗ν∗a∗W ∗). The difference between the linear and the
nonlinear dimensionless drag results is proportional to Ro2. Additional investigation
is needed for explaining and perhaps better quantifying this feature. In this regime,
the upper Taylor column of trapped fluid is slightly shorter and wider than the linear
predictions, and the lower Taylor column slug is significantly shorter and thiner than
the linear one. When Ro is increased above some ‘critical’ value the influence of this
parameter on the drag force becomes milder, and the lower region of recirculation
may disappear. The theoretical restriction on the linear theory is Ro� 1 (in contrast
with the more restrictive RoE−1/2 � 1 in the short container).

Contrary to expectations, the present solution does not bridge the gap between the
theoretical linear drag prediction and the larger experimental result of Maxworthy
(1970), because the nonlinear terms reduce the force and actually increase the discrep-
ancy. Since non-axisymmetric components and instabilities were not incorporated in
our investigation, these effects are obvious candidates for a possible increase of the
theoretical drag.
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A deficiency of the present investigation is the shape of the particle, which is
a thin disk. No experimental data are available for such a geometry (which adds
control difficulties to the many practical problems encountered in the experiments
with spherical particles). However, there are strong theoretical indications that for
the considered configuration the essential flow-field features for disk, spherical and
ellipsoidal (with non-large length/radius value) particles are very similar, because the
Taylor column is much longer than the particle dimensions and the drag is mostly
contributed by the pressure difference. Nevertheless, the numerical solution for a
spherical and ellipsoidal particle is of interest to complete the knowledge on the
problem. Other significant generalizations of the present problem that could benefit
from a numerical investigation concern (a) the motion of a drop and (b) the motion
of two or more particles (see Davis & Stone 1998). These problems, however, require
major modifications of the present code.

The present progress in theory suggests the need of new experiments. Experimental
clear-cut verification of the shape of the Taylor column slug and the recirculation
inside it, the influence of Ro, the asymmetry and the time-dependent stage are expected
to strengthen our knowledge and resolve the drag value discrepancy. Experimental
observations on interactions between two (and more) particles are expected to point
out novel and perhaps fascinating effects.

The research was partially supported by the Fund for the Promotion of Research at
the Technion and by the Bar-Nir Bergreen Software Technology Center of Excellence.
The comments of prof. H. P. Greenspan are appreciated.

Appendix A. The boundary influence function of Hocking et al.

Values of the function G(δt, δb) are given below. Recall that

δ = HE = 1
2
(δb + δt) (A 1)

and G(δt, δb) = G(δb, δt).
The diagonal values are for the symmetric δb = δt = δ in which case G(δ, δ) = F(δ).

δb, δt 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.25 1.318
0.30 1.295 1.269
0.35 1.279 1.252 1.233
0.40 1.267 1.239 1.220 1.206
0.45 1.259 1.230 1.210 1.196 1.185
0.50 1.253 1.224 1.203 1.188 1.176 1.167
0.55 1.249 1.218 1.197 1.181 1.170 1.160 1.153
0.60 1.245 1.214 1.192 1.176 1.164 1.155 1.147 1.141
0.65 1.242 1.211 1.189 1.172 1.160 1.150 1.142 1.136 1.131
0.70 1.240 1.208 1.186 1.169 1.156 1.146 1.138 1.132 1.127 1.122
0.75 1.238 1.206 1.183 1.166 1.154 1.143 1.135 1.128 1.123 1.118 1.114
0.80 1.237 1.204 1.181 1.164 1.151 1.141 1.132 1.126 1.120 1.115 1.111 1.108
0.85 1.235 1.203 1.180 1.162 1.149 1.138 1.130 1.123 1.117 1.112 1.108 1.105 1.102
0.90 1.234 1.202 1.178 1.161 1.147 1.137 1.128 1.121 1.115 1.110 1.106 1.102 1.099 1.096
0.95 1.233 1.201 1.177 1.159 1.146 1.135 1.126 1.119 1.113 1.108 1.104 1.100 1.097 1.094 1.092
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Appendix B. Constant driving force
The time-dependent flow field which appears when the particle is set in motion

from rest under the action of a constant force (in contrast with the impulsive start) is
of interest. This is expected to provide a good approximation to the physical situation
of a buoyant particle which is released from rest at some position along an axis
of rotation parallel to the gravitational acceleration. The experiments of Maxworthy
(1970) were performed in this way with spherical particles lighter than the surrounding
water. Unfortunately, no record of the initial stage of motion was made, the main
concern of these experiments being the (supposedly attainable) quasi-steady state.
Furthermore, to our best knowledge, no theoretical study of this problem has been
performed.

For the numerical solution of this problem the previously used finite-difference code
was modified, since the value of the time-dependent velocity of the particle relative
to the horizontal boundaries, wp, is sought as a part of the problem.

For the calculation of this additional variable we add the equation of motion of the
particle to the Navier–Stokes equations and previously defined boundary conditions.
The total force acting on the particle is the constant external (say, the effective
buoyancy) force minus the instantaneous drag force, D∗(t∗), which depends on the
instantaneous flow field around the particle. As in the previous case, we scale the
velocities with the particle velocity at the steady state, so the steady state has to
be identical to the case of an impulsive start. This means that the external force is
equal to the drag force at the steady state, D∗(∞), which can be computed from the
impulsive start configuration. The mass m∗p of the particle is considered here as a
known, controllable, positive constant quantity. This adds one free parameter to Ro,
E and H that govern the flow in the quasi-steady state.

The additional equation is in dimensionless form

mp
dwp
dT = D(∞)− D(T). (B 1)

Here, again, T = t∗Ω∗ and the dimensionless mass is scaled as

mp = m∗p
Ω∗

ν∗ρ∗a∗
. (B 2)

In this scaling, if the dimensional mass of the particle is m∗p = Aρ∗a∗3, where A is a
non-dimensional positive constant of the order of unity, its dimensionless mass will be
mp = AE−1. For example, the dimensionless mass of a spherical particle with the same
density as the fluid, ρ∗, is mp = 4

3
πE−1. In the present long container configuration

the right-hand side of (B 1) is O(E−1) and hence an O(1) acceleration of the particle
is expected on the T time scale.

The time-dependent solution of the flow field is now coupled with the solution of
(B 1). The necessary modification of the numerical scheme is described in Part 1.

A typical result is shown in figure 9 for a container of H = 50 and two values
of E. The axial velocity wp of the particle increases smoothly from 0 to 1 in less than
one revolution of the container, but overshoots this value, reaches and maintains for
a while a distinctive maximal value till about T = 35, then decreases towards the
steady-state value 1. This behaviour is consistent with that for the impulsive start.
Initially, the drag force on the particle grows (in about one revolution) to the value
predicted for the unbounded container, which is smaller than that of the steady state
in the finite container (by 13% for the larger E and 17% for the smaller E). Since
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Figure 9. The particle velocity as a function of time for motion under constant driving force with
H = 50, Ro = 10−4 for E = 1/100, mp = 419 (dashed line) and E = 1/200, mp = 838 (solid line).

the magnitude of the buoyant force is set equal to the steady-state drag, the particle
maintains a positive acceleration even after reaching wp = 1. At about T = 35
the information from the boundaries reaches the particle. This time interval is in
agreement with ∆T = πH/rmax = 31.4 estimated from the propagation of the inertial
wave in the impulsive start. After the start of the influence from the horizontal
boundaries the drag increases to the larger value which corresponds to the bounded
container and is in exact balance with the constant buoyancy force. The velocity is
therefore reduced to the steady-state value of 1.
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